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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1851

CRITICAL SHEAR STRESS OF INFINITELY ILONG, SIMPLY
SUPPORTED PLATE WITH TRANSVERSE STTFFENERS

By Manuel Stein and Robert W, Fralich
SUMMARY

A theoretical solutlion 1s given for the critical shear stress of
an infinitely long, simply supparted, flat plate with identical, equally
spaced, transverse stiffensrs of zero torsional stiffness. Results are
obtained by means of the Lagrangian multipller method and are presented
in the form of design charts., ZExperimental results are included and
are found to be in good agreement with the theoretical results.

TINTRODUCTION

The design of shear web beams and nonwrlinkling skin surfaces
requires a knowledge of the critical shear stress of stiffened plates.
The purpose of the present paper is to glve the theoretical critical
ghear stress of an infinitely long, simply supparted, flat plate relin—
forced with identical, equally spaced, transverse stiffeners,

The results are found by means of the Lagranglen multiplier method.
The stiffeners are assumed to have bending stiffness but no torsional
gtiffness and are agsumed to be concentrated along trangverse lines in
the middle plane of the plate., The agsumption that the stiffeners have
no torsional stiffness applies with little error in the case of many
open gection gtiffeners. The assumption that the stiffeners are con—
centrated along trangverse lines in the mlddle plane of the plate is
applicable whenever the width of the attached flange is small in com—
parison with the gtiffener spacing.

The theoretical analysis of the problem 1s given in the appendixes.
For completeness, an energy solution for the plate with relatively weak
gtiffeners 1s given in appendix A. The solution for a plate with
stiffeners of intermediate or higher bending stiffness 1s given in
appendix B. The regults are pregented in the form of nondimensional
curves which cover the complete range of stiffener stiffness and various
stiffener spacings and in a table giving values from which the curves
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were drawn (table I). Experimental results are presented for 20 panels.
Comparison of these results with the present theary indicates good
agreement between theory and experiment.

SYMBOLS

T critical shear stress
Tb°
ks critical shear—gtress coefficlent | ——
DNE
t thicknegs of the plate |
b wldth of plate
d stiffener spacing
b/d panel aspect ratio
Ept3
D flexural stiffness of the plate | ————————r
12(1 - p2)
EP Young!s modulug for plate
E Youngt!s modulus for stiffener
I effective moment of inertia of stiffemer
! Poigsont's ratio for materlal
EL ratio of stiffener atiffness to plate stiffness
Dd
A half wave length of buckles
W deflection of the plate
(Ws)i deflection of the 1fth stiffener
X,y reference axes

m, Iy, gy
r, 1 :} integers
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8y Brns coefficients of deflection function

7n undetermined Lagrangian mmltipliers

v internal energy of bending of the plate

Vy internal energy of bending of stiffeners

T external work of the gtreases
BACKGROUND

The problem of the buckling of stiffened plates in shear has been
treated by many authors by the use of both thearetical and semi-
empirical methods. In 1930 Schmieden (reference 1) solved the differ-—
ential equation for an infinitely long plate stiffened by closely
spaced transverse stiffeners (equivalent to orthotropic plate) and
found exact stability criterions for shear buckling of plates with
simply supported edges and with clamped edges. By making certain
simplifying modifications of the stability criterions, Schmleden
obtained approximate values of the critical shear stresses. ILater in
1930 Seydel (reference 2) obtained exact solutions for infinitely long
orthotropic plates with simply supported or clamped edges. With the
uge of the proper parameters Seydelis results can be readily applied
to plate—gtiffener combinationsg. The values of the stresses obtained
from Schmiedents theory lie glightly below the exact values of Seydel.
In 1947 T. K. Wang (reference 3) used the energy method to obtain an
approximate solution for plate—stiffener combinations with simply
supported edges. Wang's regults lie above the exact values of Seydel.
All the foregoing solutions are applicable only to the case of weak
gtiffeners, where the gtiffening effect of the stiffeners can be
considered to be uniformly distributed over the plate.

Solutions are also available for plates reinforced by rigid
gtiffeners. In 1936 Timoshenko (reference 4) treated the case of
simply supported rectangular plates reinforced with one or two
gtiffeners. By means of the energy method Timoshenkc found the
gtiffener flexural rigidity necessary to prevent buckling across
gtiffeners with the conservative assumpbtion that the stiffeners act as
gimple supports. In 1948, Budiansky, Conner, and Stein (reference 5)
found the critical shear stress for an infinitely long, clamped plate
divided into square panels by nondeflecting intermediate supports which
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correspond to rigid stiffeners. They also considered the case of a
plate of infinite length and width having nondeflecting intermediate
supports that form an array of square panels.

Kuhn has written a number of papers on related subjects in which
he presents semiempirical results for the critical sghear stress of
stiffened plates. (See, for example, reference 6.)

The available theoretical solutions treat the relatively unim—
portant case of weak or closely gpaced stiffeners and the case of
rigid stiffeners that divide a plate into square panels. None of the
theoretical solutions presents results for the practical range of
intermediate stiffener stiffness and very little theory is presented
for the practical range of spacing of rigid stiffeners. Also, it 1is
felt that the semiempirical results for transverse gtiffened plates
cannot be extended to all stiffener spacings and stiffnesses without
s sound theoretical basis. The theoretical results of the pregsent
paper cover the complete range of atiffener stiffness and the practical
range of stiffener spacing.

RESULTS AND DISCUSSION

The critical shear stress for a plate—stiffener combination
is given by the formula

2

7
To= Xy _59
t

o’

Curves are presented in figure 1 giving corresponding values of ks

and the stiffness parameter %% for simply supported, transversely

stiffened plates with panel aspect ratios of 1, 2, and 5. These
results are replotted in logarithmic form in figure 2 for comparison
with experimental results.

The points of discontinuity of the gslopes in the curves of figure 1
represent changes in buckle patterns. The present results for an ortho—
tropic plate agree with the exact results of reference 2. The deri-—
vation of the buckling criterion for an orthotropic plate (a plate
stiffened by stiffeners of low bending stiffness) is given in appendix A.
The derivation of the buckling criterion for plates stiffened by
stiffeners of higher bending stiffness is given in appendix B.
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In previous solutions, values of kg were found by using the
orthotroplic—plate curve and a cut—off at the value of ks for simply

supported panels. (See fig. 1.) These figures show that the present
golution ylelds values of kg that are considerably below those given

by the orthotropic—plate curve In the intermediate range of stiffener
stiffness. Also, the present solution for more rigld stiffeners yields
a curve that is higher than the cut—off, which is obtalined by assuming
the sgtiffeners to have the effect of simple supports. Since the conti-
nuity of the plate acrogs the stiffeners of higher bending stiffness
certainly adds a constraint to the plate, a higher buckling stress than
that carresponding to a gimply supported edge is obtained.

In figure 2, experimental results are compared with the theoretlcal
curveg. These results are from two sources, The firgt set of experi-—
mental data is taken from NACA tests on shear webs of 24S-T aluminum
alloy attached to torsion boxes. Drawings of a shear web and torsion
box and the method of loading are given in referénce 7. Buckling loads
were obtained from the stiffener load-deflection curves which were
taken from the original data. Each of the buckling loads glven in the
present paper is the average load at which the gtiffeners start to
deflect. The properties of the specimens and the buckling data are
given in table II.

The gecond set of experimental data 1lg teken from NACA tests on
thick web beams described in reference 8. The beams were made of
24S-T aluminum alloy with heavy flanges and with joggled stiffeners
riveted to the flanges. The open spaces in the Joggles were filled
with soft metal. A picture of a failed beam is shown in figure 3.
The load was applied at the center and the reactions were at the
ends of the beams, Lateral deflections were prevented by lateral
supports. The load, when strain was flrst observed in the stiffeners,
was taken as the buckling load. The properties of the specimens and
the buckling data are given in table IIT,

The stiffener spacings for the test results are not the same as
thoge for the theoretical results., All the test results fall in the
expected regions among the theoretical curves. Only the group of teat
regults for which g = 2.4 fall in the range which sgerves to verify
the present theory over previous theory which considered the orthotropic-—
plate curve to hold up to the cut—off at which the stiffeners are
agsumed to act as simple supports. The other groups of test results
agree with the present theory, but they do not cover the range in which
an appreciable difference exlsts between the present theory and previous
theory. More experimental results are required to confirm the present
theory fully.
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CONCLUDING REMARKS

Charts are presented from which the theoretical critical shear
atresses can be obtained for infinitely long, simply supported plates
atiffened with identical, equally spaced, transverse gtiffeners of zero
torsional gtiffness. The theoretical results are based on the Tagrangian
miltiplier method. Previous theory congidered the orthotropic curve
to hold up to a cut—off value corresponding to the stiffener stiffneas
at which the buckling load was equal to the buckling load of a simply
gupported panel the size of each bay. Comparison of the present theary
and previous theory shows that previous theory gives unconservative
results for stiffeners of intermediate stiffness and conservative
results for stiffeners of high stiffness. Test results of 20 panels
are presented which are in good agreement with the present theory. For
a conclusive check additional test results are required.

Langley Aeronautical Labaratory '
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., January 23, 1949 .
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APPENDIX A
THEORETICAL SOLUTION OF CRITICAL SHEAR STRESS OF PLATES

WITH TRANSVERSE STIFFENERS OF LOW BENDING STIFFNESS

If the stiffener bending stiffness is low and the stiffeners are
fairly closely spaced, the buckle pattern may be considered independent
of the stiffener spacing, and the plate stiffener combination can then
be analyzed as a plate with different bending properties in sach
direction, that is, an orthotropic plate., In this appendix buckling in
ghear of an orthotropic plate 1s analyzed by means of the energy method.

The buckling configuration of the plate shown in figure L is
repregented by the trigonometric series

0

- _z P__ EE oy
w = sin a, sin + cos ~— b, sin 3 (A1)

n—2,1‘|‘,-n- n=l,3,...

which satisfles the boundary conditions of simple support term by term.
The internal bending energy of the plate V, the internal bending energy
of the stiffeners Vs’ and the external work of the shear stresses T

are glven by the expressions

b A 2 2 2 2 2 2
2 5—%+& ~2(1 - p) a;’a‘e’— oW ax dy
2 ox Byg x= oy ox Jy
0 0
EI >
dx d (A2)

~
i

<l
o}
1}
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Substitution of the expansion for w (equation (Al)) into these
energy l1ntegrals gives

b |~ 2 Z“’ 2
E 2/ 42 2
= D_X.j_t— an L + n2 + b 2 P__ + n2
83 22 7 \a2

n=1,35e0.

4 00 -
v - ETAx E 2 l+ E bnenh

S 8ab3 n=2,4,...

—l’ ER K]

= ott —
TLN a
> Z_ S

—l 3,.-. q—e e

Then .
3 Z‘” 2
8b 2 b 2 4 ET

V+V, —T) —— = & et +
( s ) Dxﬁh . el <Z, > Dd

n=2’ 14', L N J

= o 2 E
+ EE b 2 I n2 + n4 B
n 232
=l,3,oot

16bk = = |

s ng
- > a,b, ————— (A3)
A j:> aon o 2 (83)

n--q

n=l,3,... q=2’l+’lll
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where

T4b2
ks = 5
Dr
According to the energy method the potential energy (V + vV, —T)

must be minimized with respect to the unknown coefficients a, and bn'
By minimizing (V + Vg, — T) with respect to the coefficients a and b,
the following set of equations is obtained:

) 2 8bkg Z
an <§§ + n2> + 4 EI q 2) =0 (Ah)
-1

q—l,3’oto

(n=2:h:6:---)

5 o
2 8bk -
b E~ + n2 + nh BLN g a ak =0 (45)
o\ 42 Dd O ‘ qa/ 2 2

q=2,)+,...

(n=l,3,5,...)

The coefficients an can be found in terms of br from

equation (Ak). Substitution of the resulting expression for a, 1in

equation (A5) results in the following equations:

22

pk \° = 2 |
S) by, 4 - 0
O E . E (22 - 2)(2 - &) (p_g . qe) . -EEJ

q=2,4,... r=1,3,... 2t

b2 o\2  hogp
b — 4+ N + -

(n=l:3:5s-a') (A6)
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4
A solution to equations (A6) exists if the following stability determi-
nant vanishes: v "
Cll 013 015 cee
031 C33 035 L N ]
c c C O (1)
o1 53 55
where
o o
C..={=—-—+n +n =] ~{—
nn A2 Dd T ~ ET
_ 2) _._+ 4 EI
q=2,h,,,, - q q +q o

c -c = 8bkg 2 jig::: rng® :,
nr - “rn —'<f;x_> A .
q=2y45 000 ( 2)(r _ q><___+ q2> + ot 5%

(where n # r)

A solution including all the a 'g and b can be obtained by

getting equal to zero the first approximation of the determinant
equation (AT) :

Cll=0
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Similarly the second approximation includes ell the a,'s, by
and b3

2

Higher approximations are found in a similar menner. A second approxi~
mation was found to give satisfactory results. Tor a given approxi—
mation it 1s necesgsary to try values of b/A and find the corre—
gsponding values of kg until a minimum value of kg with respect

to b/A is found for each %%. The results are given in table I and

in figure 1.
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APPENDIX B '

THEORETICAL SOLUTION COF CRITICAL SHEAR STRESS OF PLATES

WITH TRANSVERSE STIFFENERS CF HIGHER BENDING STIFFNESS

In appendix A a theoretical solution for a plate stiffened by
gtiffeners of low bending stiffness is presented where the buckle
pattern was taken as sinusoidal in the longitudinal direction. The
buckle pattern of plates with stiffeners of higher bending stiffness
is no longer sinusoidal in the longitudinal direction. It is then
necessary to consider deflection functions which are either symuetric
or antigymmetric about the midpoint of each bay and are periodic over
an integral number of bays. The critical shear gtress of plates with
trangverse stiffeners of higher bending stiffness 1s analyzed by means
of the Lagrangian multiplier method.

Deflection functions.— The correct buckle configuration for any
glven plate—stiffener combination is that which corresponds to the
lowest buckling load. Several types of configurations are investi—
gated. These buckling configurations are represented by the following
two—dimensional trigonometric seriles (the coordinates are given in
fig. 4). Symmetric buckling, periodic over each bay:

[+ ] [+ ]
_ . mrx nny
w = :> ;>> a.mn gin -a—-sin f;~
m=2,11-,... I’l=2,li-,..-
00 o0
mex nrKy
+ ::> :;> b cos —— sin 3= (Bla)

m=0,2,... n=l,3,-.-

Antisymmetric buckling, periodic over each bay:

[+ ] [+4]
_ :E \:E _ mix .,  nxy
W= amn sin -——-d sin <

) m=2,)+,o.o n=l,3,‘cn

ao [}
+ ; ; b . cos EEE gin E%Z : (B1b)

m=0,2,-.. -I'l=2,)-l-,...

]
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Symmetric buckling, periocdic over two bays:

=
]

. WX . nmy
a 811 = 310N =———
> > mn d b

m=1,3,... n=1,3,...

@© [ ]
: miex nny
+ —— —
E E bmn cos 3 gin .
m=1,3,... n=2,4,..,

Antisymmetric buckling, periodic over two bays:

1~ ’ o0

w = ::> j>> amn sin EEE gin E%Z
m=l,3,ca. n=2,Ll-,...

00 0
mex nny
v + 2 2 b cog —— gin —

m=1,35¢00 0=1,3,...

Symmétric buckling, one bay; antisymmetrlc buckling, next bay; periodic

over four bays:

= 22 ;E apn | 8in T;f + ( l) 2 cos mn

m=l’3’oc- Il=l,3,..g

o] 00
+A:;> v ::) b sin =X (—l) cos

m=l,3, LA n=2’)+,n .o

13
, (Blc)
(B1d)
(Ble)
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Careful study has shown that other buckle patterns would require higher
buckling loads and that only the five buckle patterns given need be
considered.

These deflection functions all satisfy term by term the conditions
of simply supported edges at y = 0, b and continuity of the plate
across the stiffeners at x = 0, 4, 2d,.... The condition that
stiffener deflection equal plate deflection at the gtiffeners is
introduced by means of Lagrangian multlpliers.

The deflection functions (Bld) and (Ble) are found to be the
governing ones for the aspect ratios investigated; the others lead
to unconservative solutions. Buckling criterions for the critical
ghear stress are derived for the deflection functions (Bld) and (Ble).

Antisymmetric buckling, periodic over two bays.— The deflection
of the plate is given by equation (Bld) as

e <
w o= j:> j:> an gin ng gin -

m=l,3,... n=2,1+,...

[+ o] o0
+ ::> ::> bmn cos ng gin E%Z

m;l’3,090 n=l’3,o.o

The deflection of the i%th stiffener is taken as

(ws)1 = E Ay sin %‘Z (B2)

n=l,35¢0.
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where, since the interval to be considered includes two stiffeners, 1 = 1
and 2. The boundary conditions that stiffener deflection equal plate
deflection are

w(id,y) — (wg)y = 0O (1=1,2)
or upon substitution,

o
Z b +44=0 (n=1,3,...)
m=1,3,..

[+ ~]
Z bmn - AI]Q =0 (n=1,3:-”)
m=l,3,¢ou

These equations show that N = A If A, 1is redefined as A

2'
the boundary conditions become

(-]

E bm + Aﬂ =0 (n=l,3:--°) (B3)

m=l’3’.oo

These boundary conditions will be satisfied in the energy expression by
means of Lagrangian multipliers,

The internal bending energy of the plate YV, the internal bending
energy of the sgtiffeners Vg, and the extermal work of the shear

gtregses T are given by the expressions



NACA TN No. 1851

16
’
)
j’-‘-m Py P <62w)2 x5 ‘
bx2 252 EEtT |
vs= = a (WS)i a0
i=1,2,...
o - 24 aw aw .
x By
: S

Subgtitution of the deflection functions of the plate and stiffeners
into these energy integrals gives

4b3 > > i <m2 :112' ' n2>2

m=1l,35... D=2,4,...

-] ©0
2 2 2
; 2
a

m;l,3’--. n=l,3’o¢.

EIﬁ ZEE::: Ah

n=1,3,..

eSS S SEY ey

> (B5)

m~l,3,.-. n—g’h’aoc q—l 3’0.0 -
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The energy method requires that the potential energy (V + Vg — T)

be minimized with respect to the ats, bts, and Als. Since the a's,
bts, and A's are, however, bound by equations (B3), the minimization
is performed by the Lagrangian multiplier method by minimizing the
following function F with respect to the a's, bts, and A's:

_ T4 Ve =T =
F_—““) 7n (}; bmnwn) -
4b3 N=1,35ce S

where the 7%s are the Lagrangian multipliers. When thles minimization
is performed, the following get of equations is obtained:

F _o_» <m2 2, n2>2 16kg 1 Z
T = &m 5
da d Z 5

a=1,3500.

(I!I=l,3, e )
(n=2,4,...)

2 2 16k =
—QF—=0=2bmn m2%+n2>+ 5 b L =4 + 7, '
b a T E (2 - n2 > (B7)

q_=2,)+,ooo
(m=1,3,...)
(n=1,3,...)
&F | LET L
—5—&::0 < %t 7 : (n=1,3,...)
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When the equations (B7) are cambined, the following equations are
obtained:

a2

8kgb n2q2rn | oo 58
< ) jf;;a_ :E;T—- _ qe)(r 2)( 2 12 +~q2>2 =0  (B8a)

q—2 )"',..o I“‘l,3,... d2

2 2
b mgl—)--+n2 ——EE-I-nhAn
m Dd

(m=1,35...)
(n=1,3,...)

Equations (B8a) written in matrix form are

—_ - —
Cp1 le3 cn115 eoo | Pm 25
cﬂ131 cm3 cm35 cee bm3 B 162A3.
D (BSD)
c11151 cn153 cm5 eee bm-5 125OA5

- (m=l)3,' . -)

where

2 2 __o

2 b2 2) (Sksb> nfnPq?
C _ =|m" —+n -
m 32 nd o b2

2 2
2 2 2
q_=2,1”"ono (q -n ) (m = T q >
<8k P = 22
_ g m-qrn
mnr ~ “mrn - nd ) E o) o)
be q2>

=2,k ... (n2 - ‘12)(1'2 . q2)<m2 a2

|
Q

<4
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A golution including all the amn's and bml's can be obtained
by the first approximation of the matrix equation (BSb)

lebml =2 % Aﬂ_ (m":l: 35ees ) (39)

Substitution of by; from equation (B9) into the boundary equation (B3)
ylelds

: : 1 1
——— =0 (BlO)
Dd

m:l’3,. ve

The following stability criterion is obtained by setting equal to
zero the coefficient of K

©
1 .2 =0 (B11)
; ‘m 2ZEL
nd

m=1,35...

Similarly, the second approximation includes all the amn's, bml's,
and Abm3's. Two simultaneous equations result from which bml and bm3
can be found. Substitution of these values into the boundary equation (B3)
ylelds two linear homogeneous equations in Al and A3' If the determi-

nant of the coefficients of these two equations is met equal to zero, the
following stabllity criterion is obtained:
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@ C 1 1 ® Cm 1
E 2 ET Eé : 2 EI
— - ;
- leCm3 le3 162 = 1,35 .. C'm:l.c:m.3 le3 2de

m=l,3" ee
[v]

(5= s Yo,

m=l’3’ see leCm3 - le32

Higher approximations are found in a similer menner. A second
approximation was found to give satisfactory results. For each of
these approximations, 1t 1g necessary to find the lowest value

of ks for each value of %%. The results are given in table I and

in figure 1.

Buckling periodic over four bays.— The deflection of the plate 1s
given by equation (Ble) as

m-1

= = mex 2 mx nxx

w = j>> j:, a gin — + (1) ~ cos — |&in —

mn 24 24 b

m=1, 3’ L N ] n=l, 3, ee e
© © w1

mrex \ 2 mrex nxy
+ b gin —— — (-1) © cos — |s8in —=
j>> ji> mn 2d 2d b

m=l,3,o.o n=2,)'",cco

The deflection of the i1tth gtiffener is taken as

<ws)1=Z Anismgbz

n=l’2’ e e

~ (B12)

(B13)
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where 1 =1, 2, 3, and 4, since the interval c
gtiffeners. The boundary conditions

become

w(id:y) -

5™

m=l,3’oou

m=1y35000

(Vs)i =0
m-l

(1) % =y
ml

by (K1) 2 —aL
m—-1

]

ongidered includes four

(1=l;2,3:h)

=0 (n=1,3,...)
0 (n=2,4,...)
0 (n=1,3,...)
0 (n=2,4%,...)
0 (n=1,3,...)
0 (n=2,4,...)

21
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m=l, oo

m=1y35000

These equations show that
An = =% =7 A T Ay

By = Bnp = = Aoz = = Aol

n1
o (1) 5 -y, = 0
=

m—L
> b () 2 + Ay =0

NACA TN No. 1851

(2=1,3;...)

‘(n=2,h,...)

(n=1:3:---)

(n=2,4%,...)

If A, 1s redefined as A, the boundary conditions become

- n1
a (1) ° —4, =0
m=l,3,ooc
[ m—1l

Z b (-1)_2_-%=o

m=1,350e.

These boundary conditions will be satisfled in the energy expression by

means of Lagrangian multipliers.

(n=1,3,...)

(n=2,4,...)

The energy integrals are the same as the energy integrals (B4),
except that in the present problem the upper limit of integration 2d
ig replaced by 4d and the upper limit of the summation 2 1is

replaced by k.

J

(B1k)
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The deflectlion functions of the plate (equation (Ble)) and stiffeners
(equation (B13)) are substituted into these energy integrals and result
in the following expressions:

eSS @

1w 2
m=1,3,.¢. n=1,3’a'- hd

+ 2 2 bmnzcjeb: + n2>2
a

. m=1,3,ooo n=2,)"',0 o

i [ )
v, = EIn Z Anznh
b3 .

n=l,2,ooo
o0 o] 00 m-l
T - Bren D > > o b ()2 ma
m mq ( 2 2)
m=l,3’.00 n=l’3’..l q=2,4,iiﬁ n - q

The minimization of (V + Vy —T) is performed by the Lagrangian

multiplier method by minimizing the following function F with regpect
to the atg, b's, and A's.

V+Vg—=T L = m-1
Pet et > (> am(DE -y,
r Dd n=l,3,... m=1,350e. .
b3
e @ m-1 |
+ E Tn E b (1) 2 - AW (815)
n=2,)+,o-a m=l,3,ooc

where the v's are the Lagrangian multipliers.
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When the minimization is performed and the resulting equations
are combined, the following set of equations is obtained:

\
[} Tl
ng BT L 2
ety e (T o
% m . q.=21)4"-00 mq n2 - qe) m %
(m=l:3:---)
(n=1,35...)
} (Bl6a)
i ET =L
ng " -
b -7 ——————— D - =
A Prn mq_;__l3 a‘mq(qe_ne)'*' anAn(l_) 0
A9 e
(m=1,3,...)
(n=2:l“:---)
/
where .
2,2 2
Amn = 2(m L2 + n2> “
4a°
8k b -1
s
Im = —3 m(—l)T
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Equations (Bl6a) in matrix form are
(— = ™ — —
2 L 6
'—I' O ““F o "_P eo e 2A
fmo 3Tm 5 = R 1
2 6 10 '
grm Am2 —grm 0 _EIPIII 0 cse bm2 32A2
6 12 2
O ——I‘ _P O "P see a 162
5 m ‘m3 7 B 3 m 3 m+1 %3
= n N A~ 0 woof [Py = (1) 512 4 | (B16b)
10 20 30
-=Ur -==T r ...
© o1 m 9 - w5 71 m ®m5 1250 &5
6 2 30 ”
p- r, © gr'm 0 o o A6+ |Pus 2592 2y,
= . . ] \...._._. L—— . __J
(m=1,3,...)
A Tirst approximation of ks is found by considering all the aml's
and byo's 1in equation (Bl6b).
\
m+1
2 2 L E
AP * S Tbrp = (1) 2 2 —D%Al (m=1,3,...)
m+1 (BL7)
2 2 EI
—3' 1-Ilrla'ml'*’ Appbpp = (-1) 32 'D—d- A (m=1,3,...)

Subgtitution of a1 and

equations (Bl4) ylelds

S

bys from equations (Bl7) into the boundary
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B .
= App 1
- ; hr2+2§_I_A1
21,3, w2 75 T Dd

32 = Ty
-3—2 ]

m=l,3’,,. AmlATﬂ2 - 5 rm

> (B18)

2 r

1 m
rm

m=l,3,o-o AmlAm2 - -9-

® A

ml 1 -
- + =0
> i

4 2
m=1,3,... A111.].13112_§I‘m 32

If the determinant of the coefficlents of the linear homogeneous
equations (B18) is set equal to zero, the following stability criterion
is obtained:

® Am2 1
> : *
4 ET
A A _ —-=T 2 —
m=1,3,... Wl m2 g = 323
ot 2
_k g =0 (819)
? jZ§;:: 4 r 2
m=1,3,... AInlAIn2 B -9- m
Similarly, from the second approximation, including all the 81 .

terms, the following stability criterion 1is obtained:

gﬁ,mm %@
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TABLE I. ~ SHEAR-STRESS COEFFICIENTS FOR STIFFENED PLATES

WITH PANEL ASPECT RATIOS OF ONE, TWO, AND FIVE

Plates with stiffensrs of low
bending stiffness?®

Plates

wilth stiffeners of hilgher
bending stlffness

Antisymmetric Buckling
buckling periodic
periodic over over
EL ks Aspect two bays four bays
Dd ratio
EI k EI k
Dd 8 Dd 8
0 5.34% 0 5.53 0 6.08
2 10.34 2.91f 17.85 7.09| 10.0
5 16.07 1 7.78] 9.8 19.03 | 10.5
20 37.1% 22.29{ 11.78 o 10.86
50 68.99 ® 13.86
100 112.2
200 184.6 0 9.65 0 5.54
3.35] 12.0 5.479 15.0
14.50 16.0 11.93 | 20.0
22.99( 18.0 26.37| 23.0
33.11} 20.0 36.29 | 2k4.5
2 45771 22.0 68.92 | 26.0
61.97| 2%.0 1454 27.0
82.92| 26.0 625 28.0
112.3 | 28.0 ) 28.2
605 35.0
o 37.05
0 ka,s 0 13.37
18.02} 70 49.19 b 60
5 90.99} 90 112,8 [100
176.8 100 220  Fiko
Wy 7 1120 o 143
1 7084 1140
8Independent of aspect ratio.

PA11 the am, bmp, 8m3, and by coefficients used.
CAll the 8m3, byh, 8ps, 8nd byg coefficients used.
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TABLE IT.- EXPERIMERTAL BUCKLING DATA OF SHEAR WEBS

WITH UPRIGHTS NOT CONNECTED TO THE FLANGES

Uprights

P [ am | (1m0 ‘(1;01.)_ (n°m%§)me? = (k1) | ¥
2-D-0 5.0 23.50.0397(1/2 x 1/2 x 1/16 |221 | 2,66 |101
3-D-0 5.0 23.5| .0394| 3/4% x 3/% x 1/16 | 680 | 3.08 |116.5
4-D-0 5.0] 23.5| .0k05| 3/ x 3/% x 3/32 | 946 | 3.295)117.5
5-D-0 10.0| 23.5| .ohok|1/e x 1/e x 1/16 | 98.3[1.21 | 43.3
6-D-0 10.0| 23.5| .0408{ 3/4 x 3/4 x 1/16 {306 |1.54 | 54.2
7-D-0 10.0| 23.5| .o410| 3/% x 3/h x 3/32 | 456 |1.47 | 51.3
8-5-0 5.0 23.5| .0394| 1/2 x 1/2 x 0.064| 95.8] 2,895]| 109
9-5-0 5.0 23.5| .0399| 3/% x 3/% x 3/32|456 | 3,01 {111
10-5-0 10.0| 23.5| .oklo| 1/2 x1/2 x 1/16| L1.4} 8o | 28.6
11-8-0 10.0| 23.5| .0398| 3/4 x 3/4 x 1/16 |151.5| 1,357| 50.1
12-5-0 10.0] 23.5| .0405| 3/4% x 3/ x 3/32 1217 |[1,41 | 50.3

83, stiffeners on one side of plate. M@:l

D, stiffeners on both sideg of plate.
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TABLE III. — EXPERIMENTAL BUCKLING DATA OF THICK WEB BEAMS

WITH UPRIGHTS CONNECTED TO THE FLANGES

X ' Uprights
Specimen b d t ET T k
(a) | (in.)| (4n.) | (in.) (n°m%?§l)sm) DT | (k1) | s

V-12-7S | 9.88 | 7.00 ]0.1005 1% X 1% X % 91.0| 15.5 | 15.4

V-12-8s | 9.88 | 7.00 Lokt 3/% x 3/4 x 1/8 | 25.8] 15.4 |14.15
V-12-9D | 9.13 | 7.00 .1025{ 5/8 x 5/8 x 1/8 | 40.4| 16.8 |13.65
V-12-10s| 9.88 | 7.00 .1043| 5/8 x 5/8 x 1/8 | 14.5] 16.3 |15,0
V-12-11D| 9.13 | 7.00 .1025( 5/8 x 5/8 x 3/32{ 30.3} 17.2 {1k4.0
v-12-12s| 9.88 | 7.00 09871 1/2 x 1/2 x 1/16{ 4.1} 12.3 |12.7
V-12-13D| 9.13 { 7.00 .1000} 1/2 x 1/2 x 1/16} 11.3] 13.1 |11.15

V-12-14s] 9.88 | 7.00 .1007| 5/8 x 5/8 x 3/32{ 11.2{ 13.2 {13.1

V-12-15D} 9.13 | 7.00 .1057| 5/8 x 5/8 x 1/16 | 18.8{ 15.7 |12.0

“_NACA ~

aS, stiffeners on one side of plate.
D, stiffeners on both sides of plate.
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Figurs 4.- Infinitely long, simply supported plate, with transverse
gtiffensrs, under shear.
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